
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2010; 81:1127–1156
Published online 17 August 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2720

A G space theory and a weakened weak (W2) form for a unified
formulation of compatible and incompatible methods: Part II

applications to solid mechanics problems

G. R. Liu1,2,∗,†

1Centre for Advanced Computations in Engineering Science, Department of Mechanical Engineering,
National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

2Singapore—MIT Alliance (SMA), E4-04-10, 4 Engineering Drive 3 Singapore, 117576, Singapore

SUMMARY

In part I of this paper, we have established the G space theory and fundamentals for W2 formulation.
Part II focuses on the applications of the G space theory to formulate W2 models for solid mechanics
problems. We first define a bilinear form, prove some of the important properties, and prove that the W2

formulation will be spatially stable, and convergent to exact solutions. We then present examples of some
of the possible W2 models including the SFEM, NS-FEM, ES-FEM, NS-PIM, ES-PIM, and CS-PIM. We
show the major properties of these models: (1) they are variationally consistent in a conventional sense,
if the solution is sought in a proper H space (compatible cases); (2) They pass the standard patch test
when the solution is sought in a proper G space with discontinuous functions (incompatible cases); (3) the
stiffness of the discretized model is reduced compared with the finite element method (FEM) model and
possibly to the exact model, allowing us to obtain upper bound solutions with respect to both the FEM
and the exact solutions and (4) the W2 models are less sensitive to the quality of the mesh, and triangular
meshes can be used without any accuracy problems. These properties and theories have been confirmed
numerically via examples solved using a number of W2 models including compatible and incompatible
cases. We shall see that the G space theory and the W2 forms can formulate a variety of stable and
convergent numerical methods with the FEM as one special case. Copyright q 2009 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In part I of this paper the theory and fundamentals for W2 formulations have been established [1].
It is proven that a numerical method developed based on the W2 formulation will be spatially stable
and converge, as long as the original physical problem is well-posed. The theory is applicable to
any problems to which the standard weak formulation is applicable, and offers numerical solutions
with special properties including softened behavior, upper bounds, and ultra accuracy. In part II
of this paper, we focus on the application of the theory to formulate various W2 models. We
first define a bilinear form, prove some of the important general properties of the bilinear form
including a set of key inequalities, and prove that the W2 formulation will be spatially stable and
convergent to exact solutions. A class of effective numerical methods, including element-based
and meshfree methods, is established that possess some desired superior properties: the SFEM,
NS-FEM, ES-FEM, NS-PIM, ES-PIM, and CS-PIM.

The numerical methods developed based on the W2 form will possess three major important
properties: (1) they are variationally consistent in a conventional sense, if the solution is sought
in a proper H space (compatible cases); (2) they pass the standard patch test when the solution is
sought in a proper G space with discontinuous functions (incompatible cases); (3) the stiffness of
the discretized model will be reduced compared with the finite element method (FEM) model and
possibly to the exact model, which allows us to obtain upper bound solutions with respect to both
the FEM and the exact solutions; and (4) the W2 models are less sensitive to the quality of the mesh,
and triangular meshes can be used without any accuracy problems. These properties have been
confirmed numerically via examples solved using a number of W2 models including the node-based
smoothed point interpolation method (NS-PIM [2, 3]), PIMs using radial basis functions such as
NS-RPIM [4], node-based smoothed finite element method (NS-FEM [5]), edge-based smoothed
FEM (ES-FEM) for 2D problems [6] and face-based smoothed FEM (FS-FEM) for 3D problems
[7], the smoothed finite element method (SFEM [8, 9]), and some newly formulated models of
edge-based smoothed PIM (ES-PIM), ES-RPIM, CS-PIM, and CS-RPIM.

2. BRIEF ON WEAK FORMULATION

Consider solid mechanics problems of linear elasticity, the strong form of partial differential
equations (PDEs) with boundary conditions, found in [10]. In this work, we consider only solids
of stable materials defined by the following remark.

Remark 2.1
Stable materials: A material is mechanically stable, if any finite amount of strains will result in
a finite amount of stresses and vice versa, and hence a finite positive amount of strain energy. In
other words, these material constants are positive definite or the matrix of the material constants
is symmetric positive definite or SPD.

2.1. Weak form statement

Assuming that the solid occupies a physical domain of �∈�d (where d is the dimension of
domain) bounded by � that is ‘Lipschitzian’. The standard weak formulation for linear elasticity
problems (see, e.g. [11]) can be summarized as follows. By multiplying the equilibrium equations
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A G SPACE THEORY AND A WEAKENED WEAK (W2) FORM 1129

with a test function v∈S⊂(H1
0(�))d and performing integration over the problem domain �, we

have ∫
�

vi
��i j
�x j

d�+
∫

�
bivi d�=0, v∈S (1)

where i , j =1, . . . ,d . Applying Green divergence theorem yields∫
�

�vi

�x j
�i j d�−

∫
�N

vi�i j n j d�−
∫

�
bivi d�=0 (2)

Applying now the boundary conditions to the above equation leads to∫
�

�vi

�x j

(
Ci jkl

�uk
�xl

)
d�︸ ︷︷ ︸

a(u,v)

=
∫

�N

vi�i j n j d�+
∫

�
bivi d�︸ ︷︷ ︸

f (v)

(3)

We now have the well-known bilinear form:

a(w,v)=
∫

�

�vi

�x j

(
Ci jkl

�wk

�xl

)
d� (4)

where v,w∈S that has basic properties of symmetry and positivity and the ellipticity: meaning
that for solids of stable materials (see Remark 2.1) there exists a positive constant c such that

a(w,w)�c‖w‖2H1(�)
∀w∈S (5)

The above inequality is rooted in the fact that the semi norm H1 norm is equivalent to the full H1

norm, meaning that there exists a positive constant cPF such that

cPF‖w‖2H1(�)
�|w|2H1(�)

∀w∈S (6)

which is known as the Poincare–Friedrichs inequality and cPF is know as the Poincare–Friedrichs
constant. The Poincare–Friedrichs inequality is one of the most important inequalities in weak
formulation, because it ensures fundamentally the stability of the weak form formulation. The
linear functional

f (v)=
∫

�N

vi ti d�+
∫

�
bivi d� (7)

It follows from Equation (3) that the exact solution of the displacement u∈S satisfies

a(u,v)= f (v) ∀v∈S (8)

where u is the ‘exact’ displacement field of a given problem that satisfies the strong form. We
make now the following remark for future references.

Remark 2.2
Weak formulation: From Equation (4), we observe that we need only first derivatives for all
functions involved in the formulation. This is because the part of the 2nd order derivatives on
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1130 G. R. LIU

u in the strong form has been ‘transferred’ to the so-called test function v. As a result the
continuity requirements on both functions u and v are weakened: they all need to be only 1st order
differentiable, compared with the requirement of 2nd order differentiable in the strong formulation
[10]. Both functions u and v can live in a Hilbert space. Therefore, Equation (8) is termed as the
weak formulation, which is the foundation for the well-known and widely used FEM.

2.2. Finite element settings

In practice, it is generally very difficult to solve the governing equations in either strong or weak
forms in analytical means for the exact solution. We then often resort to numerical methods to
obtain approximate solutions in discrete forms. The most popular method is the traditional FEM
based on the weak formulation where the Galerkin projection is chosen to obtain an approximate
solution ũ from a proper H1 space of lower and finite dimension. The FEM formulation can be
conveniently done as long as we can create a proper discrete (hence finite) H1 space based on
a mesh of elements. It is well known that such a FEM solution is the best (in energy norm)
possible solution in the discrete finite element space H1

h,0(�)⊂H1
0(�) (see, e.g. [11]) that ũ→u

when H1
h,0(�)→H1

0(�), meaning that the approximate FEM solution will approach to the exact
solution when the size of the element approaches to zero and the dimension of the FEM model is
Nn →∞.
The finite element solution ũ as an approximation to the solution of the problem defined in

Section 2 satisfies the following weak statement:

a(ũ,v)= f (v), v∈(H1
h,0)

d (9)

where displacement field ũ∈H1
h,0 is expressed in terms of the following interpretation:

ũ(x)= ∑
i∈Se

�i (x)d̃i (10)

where x={x1, . . . , xd}T, Se is the set of the nodes in the element that hosts x, d̃i is a nodal
displacement of FEM, and �i ∈H1

h,0⊂H1
0 is a nodal basis functions that are the Kronecker delta:

�i (x j )=�i j at node i , and evaluated at coordinate x j .
We then substitute Equation (10) into Equation (9), and set �i , i=1, . . . ,Nn , as the test function

v, we have the following discrete set of Nn equations:

Nn∑
j=1

a(� j ,�i )d̃ j = f (�i ), i=1, . . . ,Nn (11)

which can be written in the matrix form of

K̃d̃= f̃ (12)

where K̃ is the FEM stiffness matrix with entries of K̃i j =a(� j ,�i ), 1�i, j�Nn, d̃ is the vector

of nodal displacements d̃i , and f̃ is the vector with entries of f̃i = f (�i ).

Remark 2.3 (Full compatibility)
A fully compatible FEM model satisfies three conditions: (1) the strain–displacement rela-
tion; (2) the essential (displacement) boundary conditions and (3) the shape functions �i are
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compatible. To ensure the shape functions being compatible in a FEM setting, we practice mainly
two tricks: (a) using only nodes of the element to create �i in the natural coordinate system and
(b) use proper mapping for the element to ensure the continuity of �i on the interfaces of the
elements.

Remark 2.4 (Lower bound property)
The strain energy computed using the fully compatible FEM solution ũ∈(H1

h,0)
d ⊂(H1

0)
d is a

lower bound of the exact strain energy computed using the exact solution u:

a(ũ, ũ)�a(u,u) (13)

This property of FEM provides a good global measure of the lower bound of the FEM solution
with respect to the exact solution.

Note that the weak formulation is also applied in meshfree settings [12].

3. BILINEAR FORMS IN G SPACES

3.1. Definition

In this work, we focus on bilinear forms defined in G1
h(�) spaces [1, 13] for mechanics problems

for solids of stable materials. The bilinear form in G1
h spaces is also called the smoothed bilinear

form because of the use of the generalized smoothed gradients [10].
Consider a solid mechanics problem governed by strong form PDEs given in Section 2. The

problem domain � is discretized with a background cells or elements, over which stationary
smoothing domains are created following the rules detailed in Section 3.2. We require also that at
least the minimum number of independent smoothing domains is used (see Section 3.8.5 in [1]).
The bilinear form āD(w,v) is then defined as

āD(w,v)=
Ns∑
k=1

As
k

⎛
⎜⎜⎜⎜⎝

1

As
k

∫
�s
k

wi n j ds︸ ︷︷ ︸
ḡi j (w)

⎞
⎟⎟⎟⎟⎠Ci jkl

⎛
⎜⎜⎜⎜⎝

1

As
k

∫
�s
k

vknl ds︸ ︷︷ ︸
ḡkl (v)

⎞
⎟⎟⎟⎟⎠=

Ns∑
k=1

As
k ḡi j (w)Ci jkl ḡkl(v)︸ ︷︷ ︸

āD,k(w,v)

(14)

where w,v∈(G1
h)

d . Note that the summation is made possible by the particular way of creating the
smoothing domains that ensures the continuity of the functions on �s

k . In terms of the (generalized)
smoothed strain, āD(w,v) may be written in the matrix form of (see, Section 2)

āD(w,v)=
Ns∑
k=1

As
k ē

T
k (w)Cēk(v) (15)
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where ēk is the vector of the smoothed strains in the smoothed domain �s
k for given u={w1 w2}T

(for 2D case) with w∈(G1
h)

2, and is given by

ēk(u) = 1

As
k

∫
�s
k

Lnu(x)ds={ε̄11 ε̄22 2ε̄12}Tk

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�w1

�x1︸︷︷︸
ḡ11

�w2

�x2︸︷︷︸
ḡ22

⎛
⎜⎜⎜⎝�w1

�x2︸︷︷︸
ḡ12

+ �w2

�x1︸︷︷︸
ḡ21

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T

k

={ḡ11 ḡ22 (ḡ12+ ḡ21)}Tk (16)

3.2. Fourth inequality

The L2 norm of the strain vector ‖ē‖2
L2 can be written as

‖ē‖2L2 =
Ns∑
k=1

As
k(ε̄

2
11+ ε̄222+4ε̄212)=

Ns∑
k=1

As
k(ḡ

2
11(w1)+ ḡ222(w2)+(ḡ12(w1)+ ḡ21(w2))

2) (17)

It is now clear that L2 norm of the strain vector is the same as the G1 semi-norm (see, Equation (35)
in [1]):

|w|G1(�) =‖ē‖L2 ∀w∈(G1
h,0)

2 (18)

which will be useful in proving important properties in the following sections.
Combining Equation (72) in [1] and Equation (18), we obtain the 4th inequality:

cG‖w‖G1(�)�‖ē‖L2 ∀w∈(G1
h,0)

2 (19)

which is equivalent to the 2nd Korn’s inequality in an H1 space. Combining Equation (74) in [1]
and Equation (18), we have the following chain inequality:

cG‖w‖G1(�)�‖ē‖L2�‖w‖G1(�) ∀w∈(G1
h,0)

2 (20)

3.3. Properties of the smoothed bilinear form

Remark 3.1
By simple observation, it is clear that the smoothed bilinear form has basic properties of symmetry

āD(w,v)= āD(v,w) ∀w,v∈(G1
h,0)

2 (21)

for the symmetry property of the elastic material constants, and semi-positive definite

āD(w,w)�0 ∀w∈(G1
h,0)

2 (22)

for the positivity of the materials constants.

Remark 3.2 (Convergence property for H1 space)
For w,v∈(H1)d , when Ns→∞ and all �s

k →0, W̄ becomes Delta functions and the integral
representation will be exact. At such a limit āD(w,v)→a(w,v). Therefore, based on the known
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property of a(w,v) (see, Equation (5)), we should have the ellipticity property: meaning that there
exists a nonzero positive constant c such that

lim
Ns→∞

all �s
k→0

āD(w,w)�c‖w‖2H1(�)
∀w∈(H1

h,0)
d (23)

The ellipticity ensures the existence and uniqueness of the solution of our W2 formulation when
the smoothing domain is refined (kept unchanged). When the H1 space is enriched (element/cell
mesh is refined, together the smoothing domains), the solution approaches to the exact solution.
However, our goal is to have the smoothed bilinear form working for W2 formulation of finite
discretization of domains and functions in G1 spaces, which requires the 5th inequality.

3.3.1. Ellipticity with respect to semi-norm.

Theorem 3.1
Ellipticity with respect to semi-norm: For solids of stable materials, there exists a nonzero positive
constant csaw such that

āD(w,w)�csaw|w|2G1(�)
∀w∈(G1

h,0)
d (24)

Proof
The proof starts from the definition Equation (15). For w∈(G1

h,0)
d , we have

āD(w,w)=
Ns∑
k=1

As
k ē

T
k (w)Cēk(w)=

Ns∑
k=1

As
k ē

T
k (w)UTKU︸ ︷︷ ︸

C

ēk(w) (25)

used the fact that the material is stable, and hence the matrix of the elastic constants C is SPD
and can always be decomposed into unitary matrix U of eigenvectors and diagonal matrix K of
all the positive eigenvalues. We further have

āD(w,w) =
Ns∑
k=1

As
k ē

T
k (w)UTKU︸ ︷︷ ︸

C

ēk(w)=
Ns∑
s=1

As
k[Uēk(w)]TK[Uēk(w)]

� �min

Ns∑
s=1

As
k[Uēk(w)]T[Uēk(w)]︸ ︷︷ ︸

�‖Uē(w)‖2
L2

=‖ē(w)‖2
L2

��min‖ē(w)‖2L2 =�min︸︷︷︸
csaw

|w|2
G1(�)

(26)

where �min is the smallest eigenvalue of C. In the 2nd line of the above equation, we used the
facts (1) L2 norm definition by inner product; (2) a unitary matrix preserves L2 norms; and (3)
the L2 norm of the strain vector is the same as the semi-norm (see, Equation (18)). Finally, we
have the 5th inequality Equation (24), by letting csaw =�min. �
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3.3.2. Fifth inequality.

Theorem 3.2 (Ellipticity (coercivity))
For solids of stable materials, there exists a nonzero positive constant c f

aw such that

āD(w,w)�c f
aw‖w‖2

G1(�)
∀w∈(G1

h,0)
d (27)

which implies the ellipticity or coercivity of bilinear forms in a G1 space.

Proof
From Equation (72) in [1] and Equation (24), we immediately have

āD(w,w)�csaw|w|2
G1�csawcG︸ ︷︷ ︸

c f
aw

‖w‖2
G1 (28)

which is the 5th inequality Equation (27). �

Theorem 3.2 is important because it ensures, the existence (and hence the uniqueness) and
consequently the stability of the solution of a W2 formulation.

3.3.3. Sixth inequality.

Theorem 3.3 (Bounded property (continuity))
For solids of stable materials, there exists a nonzero positive constant c f

awv such that

āD(w,v)�c f
awv|w|G1(�)|v|G1(�) ∀w∈(G1

h,0)
d ∀v∈(G1

h,0)
d (29)

and

āD(w,v)�c f
awv‖w‖G1(�)‖v‖G1(�) ∀w∈(G1

h,0)
d ∀v∈(G1

h,0)
d (30)

Proof
We start again from the definition Equation (15). For w,v∈(G1

h,0)
d , we have

āD(w,v)=
Ns∑
k=1

As
k ē

T
k (w)Cēk(v)=

Ns∑
k=1

As
k ē

T
k (w)UTKU︸ ︷︷ ︸

C

ēk(v) (31)

where the positivity of the material constants is again used to decompose C. Equation (3.3.4)
becomes

āD(w,v) =
Ns∑
k=1

As
k ē

T
k (w)UTKU︸ ︷︷ ︸

C

ēk(v)=
Ns∑
k=1

As
k[Uēk(w)]TK[Uēk(v)]

� �max

Ns∑
k=1

As
k[Uēk(w)]T[Uēk(v)]︸ ︷︷ ︸

�‖Uē(w)‖L2‖Uē(v)‖L2=‖ē(w)‖L2‖ē(v)‖L2

��max‖ē(w)‖L2‖ē(v)‖L2 (32)
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= �max︸︷︷︸
c f
awv

|w|G1(�)|v|G1(�) =c f
awv|w|G1(�)|v|G1(�)

� c f
awv‖w‖G1(�)‖v‖G1(�) =c f

awv‖w‖G1(�)‖v‖G1(�)

where �max is the largest eigenvalue ofC. In the 2nd line of the above equation, we used the facts (1)
the Cauchy–Schwarz inequality for inner produced induced L2 norm, (2) a unitary matrix preserves
L2 norms, and (3) the L2 norm of the strain vector equals the semi-norm (see, Equation (18)). In
the 3rd line, we used Equation (49) in [1]: a semi-norm is no larger than the full norm. Finally,
we have 6th inequality Equation (30), by letting c f

awv =�max. �

Theorem 3.3 is important because it ensures that our bilinear from is continuous. Together with
the stability, we will have the convergence of the solution of a W2 formulation.

3.3.4. Softened model.

Theorem 3.4
Softened model: For stable materials and any w∈(H1

h)
d the smoothed bilinear form is smaller than

the bilinear form:

āD(w,w)�a(w,w) ∀w∈(H1
h)

d (33)

The proof of the inequality Equation (33) is quite similar to the 4th inequality Equation (75) in [1],
and a more general inequality than Equation (33) can be found in [10].

Theorem 3.4 implies that a model established based on the smoothed bilinear will be ‘softer’
than that of bilinear form which was discovered in [14].

3.3.5. Monotonic convergence.

Theorem 3.5
Monotonic convergence property: In a given division D1 of domain � into a set of smoothing
domains � =⋃Ns

k=1 � s
k where the box stands for enclosed domain, if a new division D2 is created

by sub-dividing a smoothing domain in D1 into nsd sub-smoothing-domains: � s
k =⋃nsd

j=1 � s
k, j ,

then the following inequality stands:

āD1(w,w)�āD2(w,w) (34)

which was found in [14]. Theorem 3.5 implies that the ‘softening’ effect provided by the W2

formulation will be monotonically reduced with the increase of the number of smoothing domain
in a nested manner. One now has the freedom to reduce or increase the stiffness or softness of the
model as desired.

Finally, we present the following Cauchy–Schwarz inequality for our smoothed bilinear form,
as it can be very useful in the derivation of important properties of our W2 formulations.
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Theorem 3.6
Cauchy–Schwarz inequality for our smoothed bilinear form: For solids of stable materials, we
shall have

|āD(w,v)|�√
āD(w,w)

√
āD(v,v) ∀w,v∈(G1

h)
d (35)

Proof
Because the material is stable, we shall have C=UTKU , where diagonal matrix K are the positive
eigenvalues.

āD(w,v) =
Ns∑
k=1

As
k ē

T
k (w)UTKU︸ ︷︷ ︸

C

ēk(v)=
Ns∑
k=1

As
k ē

T
k (w)(UT

√
KU)(UT

√
KU)︸ ︷︷ ︸

C

ēk(v)

=
Ns∑
k=1

As
k[UT

√
KUēk(w)]T[(UT

√
KU)ēk(v)]

� ‖UT
√
KUēk(w)‖L2︸ ︷︷ ︸√

‖ēTk (w)Cēk(w)‖L2=√
āD(w,w)

‖(UT
√
KU)ēk(v)‖L2︸ ︷︷ ︸√

‖ēTk (v)Cēk (v)‖L2=√
āD(v,v)

=√
āD(w,w)

√
āD(v,v) (36)

where
√
K denotes a diagonal matrix with the square roots of all the eigenvalues of K. �

4. WEAKENED WEAK (W2) FORMULATION

4.1. W2 statement

For solid mechanics problems given in the strong statements in Section 2, our W2 statement is
given as follows. The weakened weak (W2) solution ū∈(G1

h,0)
d satisfies

āD(ū,v)= f (v) ∀v∈(G1
h,0)

d (37)

where āD is defined in Section 3.1. Note here that we make no changes to the linear functional
(because it cannot and need not be further weakened), and the displacements are assumed in the
same form as in Equation (6) in [1] with shape functions properly constructed in either the standard
FEM or meshfree contest. We now state that.

Remark 4.1
If the solution is sought from a proper H space, the W2 statement Equation (37) is variationally
consistent in the standard weak formulation and hence the solution will be unique and will converge
to the exact solution of the strong statement.

The proof for Remark 4.1 can be found in [14], and hence will not be repeated here. However,
our goal is to have the W2 statement work for functions in G1 spaces, which is ensured by the
following theorem.

Theorem 4.1 (Unique solution)
For solids of stable materials, the W2 statement Equation (37) has a unique solution.
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Proof
To prove Theorem 4.1, we need to show two key ingredients in the W2 formulation: (1) the bilinear
form is of ellipticity to ensure the existence of the solution, and (2) the bilinear form is continuous
to ensure that the solution is bounded. Note the ellipticity has already been given by Theorem 3.2
or Equation (27), and the boundedness is given by Theorem 3.3 or Equation (30). Based on the
Lax–Milgram theorem, Equations (27) and Equation (30) ensures a W2 formulation has a unique
solution. This completes the proof of Theorem 4.1. �

We state that the unique solution the W2 statement will converge to the exact solution of the
original strong form. A proof for this statement can be found in that of Theorem 5.7 (or Theorem
5.5b) presented in [15].
Remark 4.2
Note that the W2 statement Equation (37) is in fact a generalized Galerkin formulation as the
trial and test functions are all from the same proper G space, but in a much more general setting
for solution spaces. It was termed as generalized smoothed Galerkin formulation [10], when the
G space theory was not well established with properly proven theories. With the G space theory
established in this paper, it is clear now that we have a very general framework for establishing
a wide class of computational methods. Clearly, we do not have to confirm ourselves within the
Galerkin formulation. It opens to all sorts of possibilities beyond the Galerkin formulation, such as
the Petrov–Galerkin and least-square formulations. Even within the Galerkin formulation, we now
have plenty freedoms to create the smoothing domains, and to create shape functions using FEM
settings and meshfree settings. Furthermore, even within the FEM setting, there are now many
avenues to explore. Just for an example, we can now use different shapes of elements [8, 16, 17],
mixed shapes of elements, and even mixed elements of different order, because the compatibility
worry is now off the way in our W2 formulation. We will show some of the interesting examples
in Section 6.

4.2. W2 formulation procedure

A W2 model can be established based on any setting of a FEM model [18]: we simply use exactly
the same mesh of the FEM, but create an additional overlay mesh of smoothing domains. These
domains can be based on elements or nodes or edges of the elements. Such models have already
been created and known as the SFEM [8, 16, 17], NS-FEM [5, 6], and ES-FEM [6]. Note that the
FEM shape functions used in a W2 model do not have to be continuous, which means that one can
practically use elements of mixed orders. The only thing that one needs to make sure is that the
interface lines of the smoothing domain do not share any finite part of these discontinuous lines
in the FEM model with mixed order of elements.

A more general W2 formulation can be based on meshfree settings. In such cases, we often
use a set of triangular background cells, although any other type of background cells can also be
used. We prefer triangular cells because they can be created much more easily in an automatic
fashion compared with other types of cells. Upon the background cells, we create a set of non-
gap and non-overlap smoothing domains. In the meshfree settings, the shape functions are often
discontinuous, and hence we need to make sure that the boundaries of these smoothing domains
do not share any finite portion of the lines where the nodal shape functions are discontinuous.
Typical W2 models are the NS-PIM [2, 3], NS-RPIM [9], ES-PIM [19], ES-RPIM [19], ES-PIM
[20], and CS-PIM [20].

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:1127–1156
DOI: 10.1002/nme



1138 G. R. LIU

Once the W2 model is created, the formulation procedure is largely the same as that in a standard
FEM model, described in Section 2.2. In the following we will demonstrate a number of existing
W2 models, and some of the newly created ones.

5. POSSIBLE W2 MODELS

We now introduce a number of W2 models that can largely be divided into two groups: FEM settings
and meshfree settings. For models of FEM settings, the displacement functions are continuous,
compatible and hence in an H1 space, but we use W2 formulation; while in meshfree settings, the
displacement functions are, in general, discontinuous, incompatible, and hence in a G1 space. The
following discussion will be brief on models of FEM settings, and in more detail on meshfree
settings, in particular the PIM settings.

5.1. Smoothed finite element method (SFEM)

One typical W2 model is the so-called smoothed finite element method (SFEM) [8, 16, 17]. In the
SFEM, the physical domain � is first meshed with Ne elements of say, quadrilaterals as we do in the
FEM procedure, and an element is further divided to form a number of smoothing domains/cells,
as shown in Figure 1, which gives a total of Ns smoothing domains, and � =⋃Ns

k=1 � s
k . In this

case we shall have Ne�Ns.
The SFEM uses the FEM shape functions created based on elements and it requires little

change to the FEM codes. Note that in the SFEM formulation, n-sided polygonal elements can
be used [17]. In such cases, the shape functions are constructed using simple point interpolation

y

x

y

x

(a) (b) (c)

(d) (e) (f)

Figure 1. SFEM model [16]: Division of an quadrilateral element in a FEM mesh into smoothing
domains/cells (SC): (a) Only one smoothing cell is used for the element (SC=1); (b) two smoothing
cells are used for the element (SC=2), and so on. The smoothed strains each of these cell areas of used

individually to compute the stiffness matrix; (c) SC=3; (d) SC=4; (e) SC=8; and (f) SC=16.
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procedures and no mapping is required. When linear triangular elements are used, the smoothing
operation to the elements has no effect at all, regardless of how many smoothing cells are used
in an element, and hence the SFEM produces the same solution as the FEM. Many other good
properties of SFEM have been found such as resilience to the element mesh distortion accurate
in stress solution, etc. In general, when Ns→∞, the SFEM become the FEM, if the same set
of shape functions in a proper H space can be used. Readers are referred to [8, 16, 17] for more
details.

5.2. Node-based smoothed finite element method (NS-FEM)

A node-based SFEM or NS-FEM [5] has been proposed recently, and applied to n-sided polygonal
elements. In the NS-FEM, the smoothing domains are node-based, as shown in Figure 2. The
problem domain � is meshed with Ne elements of n-sides with a total of Nn nodes as we do
in the FEM procedure. Then Ns smoothing domains are formed with each �s

k which contains a
node and covers the portions of the elements sharing this node. Therefore, in this case Ns=Nn,
satisfying the minimum number of smoothing domains. It is found that the NS-FEM can produce
the upper bound solutions [5]. When linear triangular elements are used, the NS-FEM is the same
as the NS-PIM using linear interpolations [2].

5.3. Edge-based smoothed finite element method (ES-FEM)

An edge-based SFEM or ES-FEM has been proposed recently for general n-sided elements [6].
In the ES-FEM, the smoothed Galerkin weakform is also used and the procedure is almost the
same as the NS-FEM, except that the smoothing domains are created based on the edges of the
elements, as shown in Figure 3. The ES-FEM was devised to remove the spurious modes observed
in NS-FEM by simply changing the way of constructing the smoothing domains. This simple
change has made the mode with a ‘close-to-exact’ stiffness for accurate solution, and successfully

node k

cell
(k)

(k)Γ

: central point of n-sided polygonal element : field node : mid-edge point

Figure 2. NS-FEM model [5]: n-sided polygonal elements (bounded by solid edges) and the
non-overlapping stationary smoothing cells/domains (shaded areas) associated with node k. The smoothed

strains of each of these smoothing cells are used individually to compute the stiffness matrix.
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(k)Γ

Γ
(m)(m)

: centroid of triangle: field node

boundary edge m

edge k

(k)

Figure 3. ES-FEM model [6]: Triangular elements (bounded by solid lines) and the smoothing domain
� (shaded areas) created by sequentially connecting the centroids of the surrounding triangles of an
edge with the nodes on the edge. The smoothed strains of each of these smoothing domains are used

individually to compute the stiffness matrix.

solved the spurious modes when solving dynamic problems [6]. When linear triangular elements
are used, the ES-FEM is the same as the ES-PIM using linear interpolations. For 3D problems,
the ES-FEM becomes FS-FEM [7], in which we use face-based smoothing domains [6].

5.4. Cell-based smoothed point interpolation method (CS-PIM)

The CS-PIM [20] model is developed using cell-based smoothing domains, which is similar as in
the SFEM [6]. The difference is that: (1) the CS-PIM prefers using triangular cells and (2) CS-PIM
uses PIM or RPIM shape functions that can be discontinuous in the smoothing cells. When linear
shape functions created using two nodes on a triangular cell edge are used, the CS-PIM is the
same as the linear FEM using the same triangular mesh. Details on CS-PIM can be found in the
recent paper [20].

5.5. Node-based smoothed point interpolation method (NS-PIM)

The NS-PIM model was developed in 2005 [2], and is in fact the earliest W2 model developed
using discontinuous shape function created using PIM or RPIM using local support domains that
are generally overlapping [15]. The NS-PIM generally uses a triangular mesh for guiding the node
selection for the interpolation and for the smoothing domain construction, because a triangular
mesh can be generated automatically for complicated problem domains. The problem domain �
is meshed with Ne elements of, say, triangles with a total of Nn nodes as we do in the FEM
procedure. Based on these triangular elements, the domain is then divided into Ns node-based
smoothing domains � =⋃Ns

k=1 � s
k , and each �s

k contains a node and covers portions of elements
sharing the node [1, 14, 21], as shown in Figure 3 in [1].
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Field node

Point of interest

61 ~ ii Supporting

nodes for interest point
located in cell i

31 ~ jj Supporting 

nodes for interest point 
located in cell j

i1

i2

i3

i4

i6

i5

j1

j2

j3x
x

Cell j 

Interior cells Edge cells

Figure 4. Supporting node selection in PIMs for shape function construction. For linear interpolations,
three nodes of the triangular cell hosting x are selected. For quadratic interpolations, six nodes (three nodes
of the triangular cell hosting x, and three nodes locate in the remote vertices for the three neighboring
cells) are selected. In RPIM interpolations, all the nodes that are directly connected to the three nodes of

the triangular cell hosting x are selected.

The selection of nodes for creating PIM and RPIM shape functions is illustrated in Figure 4. For
linear interpolations, three nodes of the triangular cell hosting the point of interest x are selected.
For quadratic interpolations, six nodes (three nodes of the triangular cell hosting x, and three nodes
located in the remote vertices for the three neighboring cells) are selected. When the hosting cell is
located on the boundary, we always use three nodes. In RPIM interpolations, all the nodes that are
directly connected to the three nodes of the triangular cell hosting x are selected. The procedure for
computing these shape functions is given in very detail in [22]. The PIM or RPIM shape functions
constructed are not compatible except the linear interpolation case. Our W2 formulation works
well for these incompatible functions, as will be shown in the example problems.

Note that when linear shape functions are used, the NS-PIM and NS-FEM give the same results
for the same triangular mesh used [2].

5.6. Edge-based smoothed point interpolation method (ES-PIM)

The ES-PIM model is developed in this work using edge-based smoothing domains, which is the
same as in the ES-FEM [6]. The difference is that ES-PIM using PIM or RPIM shape function
can be discontinuous. When linear shape functions are used, the ES-PIM and ES-FEM give the
same results for the same triangular mesh used [6].

6. NUMERICAL EXAMPLES

We now present four numerical examples to examine the theories presented in this work. Our
numerical study will focus on NS- and ES-PIM models. For NS- and ES-FEM models, readers
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are referred to [5, 6, 8, 16, 17]. In the following study, the numerical errors are quantified using the
following formulations. For displacements:

ed =
√∑n

i=1 (uexacti −unumerical
i )2∑n

i=1 (uexacti )2
(38)

which quantifies the error in the primary variable of our problem and is important to many analysts.
The error in strain energy is evaluated numerically using

ee= 1

A

√
1

2

NQ∑
i=1

Ai (eexacti −enumerical
i )T(eexacti −enumerical

i ) (39)

where A is the area of the problem domain, Ai is the area of the i th integration cell (which is
the smoothing domain for present methods, and element for FEM), and NQ is the number of
integration cells and is given by

NQ =
{
Ns (for present methods)

Ne (for FEM)
(40)

in which Ns is the number of smoothing domains and Ne is the number of elements. All the strains
are evaluated at the center of the integration cell. The error in strain energy of our problem is
important to confirm our theory.

6.1. Standard patch tests

The theories presented in this work are new and need to be confirmed numerically. The first
numerical test is the standard patch test for any weak form method to test on the convergence: a
method passing the standard patch test is capable of producing solutions approaching the exact
solution of any order when the mesh is refined. We consider a 2D patch of unit square with
irregularly distributed 109 nodes generated in a random fashion with an irregular factor of 0.2, as
shown in Figure 5. The randomness is injected for removal of obvious ‘coincidence’ in the node
distribution in the patch. Linearly distributed displacements are specified on the four edges of the
patch using the following equations:

u1(x, y) = 0.6x

u2(x, y) = 0.6y
(41)

The exact solution for this patch should be a linear displacement filed given by Equation (41)
over the entire patch. A similar 3D patch of a cub is also designed with 166 irregularly distributed
nodes. The results for both 2D and 3D patch tests are listed in Table I. It is clearly shown that all
these schemes pass the patch tests to machine accuracy, including the ones using discontinuous
functions in G1

h spaces. This ensures that all these methods are capable of reproducing linear
field exactly and hence will converge to exact solutions of arbitrary order of continuity, because
we have proven in theory the stability of the models. Note that we have also tested a number of
other patches with different number of nodes and various arbitrary nodal arrangements. All of the
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Figure 5. A 2D patch of unit square with irregularly distributed 109 nodes
generated with a random factor of 0.2.

Table I. Errors in numerical results in displacement norm ed for 2D and 3D patches.

Methods 2D 3D

NS-PIM (linear, compatible) 2.0852432E−15 1.2441043E−15
NS-PIM (quadratic, incompatible) 1.9425082E−14 Not conducted
ES-PIM (linear, compatible) 1.3586671E−15 4.6522876E−16
ES-PIM (quadratic, incompatible) 1.1453597E−14 Not conducted
NS-RPIM (local RBF, incompatible) 9.6473926E−16 7.6975097E−16
ES-RPIM (local RBF, incompatible) 1.5495214E−15 6.7286606E−14

patch tests are passed to the machine accuracy. This is because the assumed displacement field
is linearly complete, and our model is proven stable. Note that for 3D problems, we have only
developed high-order codes for NS-RPIM and ES-RPIM, but not for the NS-PIM and ES-PIM,
because NS-RPIM and ES-RPIM are much more robust for nodes selection in 3D situations, and
is clearly preferred for 3D problems.

6.2. Cantilever loaded at the end

A cantilever of length L and height D subjected to a parabolic traction at the free end as shown
in Figure 6 is studied here using W2 models. The cantilever is assumed to have a unit thickness
and under the plane stress condition. The analytical solution is available and can be found in a
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L

x

y

D

P

Figure 6. Cantilever loaded with a parabolically distributed load at the end.

textbook by Timoshenko and Goodier [23].

ux = − py

6E I

[
(6L−3x)x+(2+�)

(
y2− D2

4

)]

uy = p

6E I

[
3�y2(L−x)+(4+5�)

D2x

4
+(3L−x)x2

]
(42)

where the moment of inertia I for a beam with rectangular cross-section and unit thickness is
given by I =D3/12.

The stresses corresponding to the displacements Equation (42) are

�xx (x, y)= −p(L−x)y

I
, �yy(x, y)=0, �xy(x, y)=− p

2I

(
D2

4
− y2

)
(43)

The related parameters are taken as E=3.0×107 Pa, �=0.3, D=10m, L=50m, and P=−1000N.
In the computations, the nodes on the left boundary are constrained using the exact displacements
obtained from Equation (42) and the loading on the right boundary uses the distributed parabolic
shear stresses in Equation (43). We use again irregularly distributed nodes generated in a random
fashion with an irregular factor of 0.25, and the node distribution and triangular meshes are plotted
in Figure 7. The randomness is injected for removal of any possible obvious ‘coincidence’ in the
numerical models and this same set of meshes are used to examine all the methods to provide a
common ground for comparisons.

Figure 8 plots the deflection of the cantilever along the neutral line (y=0) obtained using
different methods and the same irregular mesh with 801 nodes. In terms of displacement, all the
methods give very good results and it is hard to distinguish them from this figure. Figure 9 plots
the shear stress distribution along the cross-section of the cantilever at x= L/2 obtained using
different methods and the same mesh. The discrepancies are mainly observed on the surfaces of
the beam. It seems that the PIMs perform better than the FEM. We, however, need more precise
examinations to quantify the accuracy in these solutions.

Figure 10 plots the convergence of the solutions in displacement norm for the cantilever solved
using different methods and the same set of irregular meshes. The solutions of all the methods
converge and have about the same convergence rate. This confirms Theorem 4.1 and supports the
discussions given in Section 4.2 in [1]. All the PIMs give more accurate solutions compared with
the FEM, except the linear NS-PIM which is about the same as the FEM. The quadratic NS-PIM
gives a better solution than the linear NS-PIM. Note that the quadratic PIM shape functions are
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Figure 7. Irregularly distributed nodes generated using randomly with an irregular factor of 0.25 for the
cantilever. These meshes will be used to examine all the methods.

created using the same mesh as in the linear PIM, which is different from a quadratic FEM model
that has middle edge nodes and hence the nodal density would be about doubled compared with the
linear FEM model. Although the order of approximation is increased in quadratic PIMs, the nodal
spacing is not changed at all. Therefore, the accuracy improvement is not significant, as shown in
Figure 10. In addition, the smoothing operations (with constant smoothing functions) used discount
somewhat the higher-order approximation in the function. The ES-PIM family performs extremely
well, and it is about 10 times more accurate than the FEM, especially the linear ES-PIM. This
reflects the theoretical discussions given in Section 4.2 in [1]. In addition, we observe that the
numerical rates of convergence in displacement norm of PIM models are roughly about the same as
that of the FEM model with a theoretical value of 2.0. This again reflects the theoretical discussions
on convergence rate in L2 norm given in Section 4.2 in [1]. We note that in linear FEM models,
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Figure 8. Deflection of the cantilever along the neutral line (y=0) obtained different methods and the
same irregular mesh with 801 nodes. In terms of displacement, all the methods give very good results

and it is hard to distinguish them from this figure.
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Figure 9. Shear stress distribution along the cross-section of the cantilever at x= L/2 obtained different
methods and the same irregular mesh with 801 nodes. The discrepancies are observed on the surfaces of

the beam. It seems that the PIMs perform better than the FEM.
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Figure 10. Convergence of the solutions in displacement norm for the cantilever solved using different
methods and the same set of irregular triangular mesh. All the methods have about the same convergence
rate, and all the PIMs give more accurate solution compared with the FEM, except the linear NS-PIM
that is about the same as the FEM. The ES-PIM family performs extremely well, and its about 10 times
more accurate than the FEM. The quadratic NS-PIMs gives better solution than the linear NS-PIM, but

the quadratic ES-PIM is a little worse than the linear ES-PIM.

the convergence rate of the interpolation error in L2 norm is the same as the error in displacement
norm defined in Equation (39). For our W2 formulation, we expect a similar relationship, but it is
yet to be established theoretically.

Note that the quadratic ES-PIM is a little worse than the linear ES-PIM. This is because of the
extremely high accuracy of the linear ES-PIM, in addition to the reasons mentioned earlier for
the NS-PIM case. The RPIM performs roughly about the same as the quadratic PIMs. As radial
basis functions are used in the shape function construction, the RPIM works particularly well for
extremely irregularly distributed nodes, as reported in [5].

Figure 11 plots the convergence of the solutions in strain energy norm for the cantilever solved
using different methods and the same set of irregular meshes. As the energy errors measured in H1

norm and G1 norm is a little different, the following comparison in energy norm may not be
fair to the FEM, and hence is only indicative. All the PIM methods converge very well and have
much higher accuracy compared with the FEM. This confirms again Theorem 4.1 and supports
the discussions given in Section 4.2 in [1]. All the PIM methods have higher convergence rate
compared with the FEM, except the linear ES-PIM that has about the same rate as the FEM. The
numerical rates of convergence of PIM models in energy norm are in the range of 1.02–1.51 which
is very close to the highest theoretical value of 1.5 measured in G1 norm given in Equation 86 in
[1]. All the rates of convergence for the PIM models are higher than that of the FEM model of
0.97 whose theoretical value is 1.0. In terms of convergence rate, quadratic ES-PIM (1.51) and ES-
RPIM (1.4) outperform the rest. This may partially be attributed to the higher-order interpolation
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Figure 11. Convergence of the solutions in strain energy norm for the cantilever solved using different
methods and the same set of irregular triangular mesh. All the PIM methods have much higher
accuracy compared with the FEM. All the PIM methods have higher convergence rate compared
with the FEM, except the linear ES-PIM that has about the same rate as the FEM. In terms of
convergence rate, the ES-RPIM outperforms; and in terms of the accuracy the NS-RPIM stands out
and is about 8 times more accurate than the FEM. In the energy norm measure the quadratic PIMs

perform better than their linear counterpart, although it is not that significant.

used. In terms of accuracy all of the PIM family performs extremely well, and the accuracy is
about 2–4 times greater than the FEM in terms of energy norm. This again reflects the theoretical
discussions given in Section 4.2 in [1]. We note that in linear FEM models, the convergence rate
of the interpolation error in G1 norm is the same as the error in strain energy norm defined in
Equation (41). For our W2 formulation, we can expect a similar relationship, but it has not been
established theoretically. In terms of accuracy a NS-RPIM stands out and it is about 4 times more
accurate than the FEM. In the energy norm measure the quadratic PIMs perform better than their
linear counterpart, although it is not very significant.

Figure 12 shows the solutions converging to the exact solution for the cantilever problem obtained
using different methods and the same set of irregular triangular mesh. First, we observe the fact
that all the W2 PIM methods give upper bound solutions with respect to the FEM solution. This
confirmed Remark 3.5 in [1] and Theorem 3.4 numerically. Second, except the linear ES-PIM,
all the PIM methods give upper bound to the exact solutions, in contrast to the FEM model that
gives the lower bound to the exact solution. This confirms again Theorem 4.1. Quadratic PIMs
and RPIMs give tighter upper bounds. The pair of linear ES-PIM and quadratic ES-PIM provides
both upper and lower bounds that are very tight for this problem. The outstanding performance
of the edge-based smoothing methods was reported in great detail in the [6] in the FEM settings:
ES-FEM.
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Figure 12. Solutions converging to the exact solution for the cantilever problem obtained using different
methods and the same set of irregular triangular mesh. Except the linear ES-PIM, all the PIM methods
give upper bound solutions in contrast to the FEM that gives the lower bound solution. Quadratic PIMs
and RPIMs give tighter upper bounds. The pair of linear ES-PIM and the quadratic ES-PIM provide both

upper and lower bounds that are very tight.

Figure 13 shows the solution in the maximum Von Mises stress at the node located at (0,5)
(upper-left corner) on the cantilever problem obtained using different methods and the same set
of irregular triangular mesh. In all these models we perform the same ‘area-weighted averaging’
post-processing to get the stress at the node. From the analytic solution we know that the maximum
Von Mises stress will occur at either the upper-left or the lower-left corners of the cantilever. The
results of the numerical models have also detected the same and point to either of these two corners
for all the models. From Figure 13 we found that the NS-PIMs give the best solution, followed
by the ES-PIMs and FEM.

6.3. Rectangular plate with a crack

A rectangular plate (4a×2a) with a crack of length a=20 shown in Figure 14(a) is analyzed using
linear ES-PIM. The left edge of the plate is constrained, while the right side is subjected to horizontal
unit traction. Plane stress problem is studied with the material parameters of E=3.0×107 Pa and
v=0.3. Because of the presence of the crack, we expect stress singularity at the crack tip. A proper
mesh is therefore needed, and the best way to obtain such a mesh is to conduct adaptive analysis.
Since we can use triangular elements with ease in our models and mesh can be very irregular, an
adaptive analysis can be performed easily using the local re-meshing technique presented in [24].
The refinement process takes 4 steps to complete, and the mesh at the 4th stage is as shown in
Figure 14(b). with 1084 nodes. The energy error indicator is controlled within 5% in relation to
the global total energy, and the details on the error estimation techniques can be found in [24].
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Figure 13. Solutions in the maximum Von Mises stress at the node located at (0, 5) (upper-left corner)
on the cantilever problem obtained using different methods and the same set of irregular triangular mesh.

The results in terms of stresses are shown in Figure 14(c), and it is found that the results agree
well with those obtained using EFG [15].

Note that a more proper modeling of problems with crack needs simulating the singular stress
field. We are still working on the creation of such a singular field for the proposed models, and
will present much more detailed formulations on the singular field creation and numerical results
for this type of problems in the future. When the singular field is properly modeled, one needed
only a very coarse mesh to obtained good solutions including the energy release rate.

6.4. Application to a 3D axletree

Finally, to demonstrate our model on 3D problems, a 3D practical problem of axletree base is
studied using one of the W2 methods: NS-PIM with linear interpolation. As shown in Figure 15,
the axletree base is symmetric, fixed in the locations of four lower cylindrical holes and subjected
to a uniform pressure (P=1000N/m2) applied on the concave cricoid surface and fixed along the
surface of four cylindrical holes. The material constants are taken as E=3.0×107 Pa and v=0.3.

The analysis was done using NS-PIM with 21 340 4-node tetrahedron elements and 4859 nodes.
The contour of the Von Mises stress is shown in Figure 16. The maximum Von Mises stress is
found as 6.607 kPa. A reference solution for comparison is also obtained using a very fine FEM
model with 30 916 nodes which has about 7 times more nodes than the NS-PIM model. The
maximum Von Mises stress of the very fine FEM model is found as 6.765 kPa. The difference
between the coarse NS-PIM and the very fine FEM model in the maximum Von Mises stress is
about 2%.

6.5. Issues on computational efficiency: a comparitive study

To conduct a meaningful and fair test on the computational efficiency of these numerical methods,
we choose the problem of a square plate. This is because the exact solution for this problem is not
in a simple polynomial form and hence allows us to use many nodes without getting too fast the
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Figure 14. Stress distribution in an L-plate obtained using the linear ES-PIM.
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Figure 15. A 3D axletree base.

Figure 16. The contour of the Von Mises stress distribution. On the left: reference solution
obtained using FEM with 30 916 nodes; On the right obtained using NS-PIM with 21 340

4-node tetrahedron elements (4859 nodes).

exact solution. In addition, we have the exact solution to quantify the error accurately. The plate
is of 10m multi 10m with a central circular hole of 1m subjected to a unidirectional tensile load
of 10.0N/m2 in the x direction. The martial constants are E=1.0×103 Pa, �=0.3. The detailed
settings of the problem can be found in [2], and exact solution can be found in [23].

6.5.1. Overhead cost. The computational cost of a model consists of two parts: ‘overhead’ costs
for all operations until the stiffness matrix is formed (including Gauss integration, etc.), and the
solver time to solve the resultant system equations. In our W2 models, the overhead time includes
the smoothing operations. On the one hand, they require computation that the FEM does not. On
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Table II. Comparison of the CPU time (s) for different methods (3-node
triangular mesh with 22 930 nodes).

Methods FEM ES-PIM NS-PIM

Overhead 2.19 2.33 2.20
Solver 24.64 77.82 103.6
Total 26.83 80.15 105.8
Ratio 1.0 2.99 3.94

the other hand, it saves time for the computation of the derivatives of the shape functions that are
needed in the FEM for domain-type Gauss integration (if the elements are not linear triangles).
Therefore, overall it should not have too much difference. To confirm this we conducted a detail
analysis of all linear models. The results for the overhead costs are listed in Table II. The tests are
conducted on a Dell PC of Intel� Pentium(R) CPU 2.80GHz, 1.00GB of RAM. In the test, FEM,
ES-PIM, and NS-PIM all use exactly the same triangular mesh. It is clear that there is not much
difference in the overhead computations for all these three models. Note that the linear FEM of
triangular elements requires the least overhead time among all the FEM models of other types of
elements, because the computation of the derivatives of linear shape functions is trivial (constant)
and the integration is also very simple (elemental summation). The linear ES-PIM and NS-PIM
are as efficient as the linear FEM in terms of overhead costs. Most meshfree methods, however,
will surly lose out to FEM in this regard [15].

6.5.2. Solver cost for same mesh. Note that the major cost in a computation of a not-too-small
model is solving the system equations, and therefore we need to further examine the solver CPU
time for these methods. Such a test will of course depend on the type of solver used. In the PIM
models, there is no increase in degrees of freedoms, compared with the FEM model using the
same mesh. If a full matrix solver is used the CPU time for PIMs should be the same as the
FEM model using the same mesh. Because the solutions of PIMs are more accurate than that of
the FEM, the computational efficiency of PIMs will be surely higher than the FEM, as discussed
in [2]. In this work, we have just conducted a test using a very efficient bandwidth solver coded
in MFree2D c©, and the results are also listed in Table II It is clear that the meshfree type methods
consume more CPU time: ES-PIM is about 3 times and NS-PIM is about 4 times that of FEM. It
is found that these meshfree type of methods are comparable to FEM methods, although they are
still slower than the FEM model using the same set of nodes. Note that many other widely used
meshfree methods need about 20–50 times CPU time compared with FEM. We also note that the
solver time is much more (10 to 50 times) than the overhead time. This means that the overhead
time is negligible which is a well-known fact in FEM analysis.

6.5.3. Computational efficiency. A fair comparison should be the computational efficiency: total
(overhead+solver) CPU time needed for obtaining the results of the same accuracy. An efficiency
test is therefore conducted, and the results are listed in Table III for the error in displacement norm.
It is found that the ES-PIM is about 8 times more efficient than the FEM. However, the NS-PIM
is about 3 times less efficient than the FEM, showing that obtaining an upper bound solution is
more costly. Table IV shows the error in energy norm defined in Equation (39). It is found that
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Table III. Computational efficiency: total CPU time needed for obtaining the results of the same accuracy
in displacement norm (for error in displacement solutions at ed =1.0E−4).

Methods FEM-T3 ES-PIM-T3 NS-PIM-T3

Total CPU time (s) 92.4 11.1 270.6

Ratio 1.0 1
8.33

1
0.34

Table IV. Computational efficiency: total CPU time needed for obtaining the results of the same accuracy
in energy norm (for error in energy solutions at ee =6.31E−7).

Methods FEM-T3 ES-PIM-T3 NS-PIM-T3

Total CPU time (s) 547.7 12.6 23.3

Ratio 1.0 1
43.4

1
23.5

the ES-PIM is as much as 40 times more efficient than the FEM, and even the NS-PIM is about
20 times more efficient than the FEM for this test.

7. CONCLUSION

In this paper we have established for the first time the G1 spaces with a set of important inequalities,
based on which a weakened weak (W2) formulation has been proposed with necessary theories
ensuring the stability and convergence of the formulation. A number of example problems are
used to examine the W2 models confirming our theoretical predications. Compared with a standard
weakform model that searches for solution in a proper H1 space, the W2 model searches for
solutions in a proper G1 space, which leads to the following major significances:

1. W2 formulation is a unified formulation for all the compatible and incompatible models,
thanks to the newly established G space theory. It works well for settings of the finite element
methods (FEM) and meshfree methods.

2. Much more flexible ways of shape function construction can now be used: one does not need
to worry too much about the compatibility of the assumed displacement functions, all one
needs is the linear independence of the shape functions.

3. We can now search for solution from both sides (below and above) in proper G1 spaces. This
offers the possibility for use to obtain both lower and upper bound solutions, ultra-accurate
solutions, and even ‘exact’ solutions.

4. The numerical model created becomes softer, which offers a very much needed relief on the
overly stiff phenomenon in the standard FEM models.

5. The W2 models work well with triangular meshes, which relieves the burden on creation
quality meshes for complicated geometries.

6. The linear ES-PIM is about 8 times more efficient in displacement norm and 40 times in
energy norm than the FEM for the test problem of the plate with a hole. The linear ES-PIM
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gives a lower bound (for all the problems analyzed so far in Liu’s group), but very accurate
solution.

7. The linear NS-PIM is found to be about 3 times less efficient than the linear FEM, but it can
offer important upper bound solutions for problems with complicated geometry.
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